‘ ! ! . LLNL-CONF-426270

LAWRENCE
LIVERMORE
NATIONAL

~owon | AUItOMaDeD: Automata-Based
Debugging for Dissimilar Parallel
Tasks

Greg Bronevetsky, Ignacio Laguna, Saurabh
Bagchi, Bronis R. de Supinski, Dong Ahn, Martin
Schulz

March 24, 2010

International Conference on Dependable Systems and
Networks

Chicago, IL, United States

June 28, 2010 through July 1, 2010

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

AutomaDeD: Automata-Based Debugging for Dissimilar Parallel Tasks*

Greg Bronevetsky, Ignacio Laguna, Saurabh Bagchi, BrondgeRSupinski, Dong H. Ahn, and Martin Schulz

Abstract set that identifies the offending task and, to a customizable
granularity, the relevant portion of code within the task.

Today’s largest systems have over 100,000 cores, with \We present AutomaDeD, a tool set that achieves this goall
million-core systems expected over the next few years. Thisf focusing debugging efforts to improve developer effi-
growing scale makes debugging the applications that run ciency. It performs runtime monitoring of a parallel appli-
on them a daunting challenge. Few debugging tools per- cation to build a statistical model of the application’sitg
form well at this scale and most provide an overload of timing and control flow behavior. The typical use case for
information about the entire job. Developers need tools AutomaDeD is that a user suspects a run of an application
that quickly direct them to the root cause of the problem. is erroneous and would like to get some guidance to what
This paper presents AutomaDeD, a tool that identifies which parts of the application code to focus on for debugging. Au-
tasks of a large-scale application first manifest a bug at a tomaDeD achieves this by identifying the period in time, the
specific code region at a specific point during program ex- task(s), and therror site, the region of code, where a fault
ecution. AutomaDeD creates a statistical model of the ap- first manifests itself. Thus, AutomaDeD provides the basis
plication’s control-flow and timing behavior that organ&ze for eventual root cause diagnosis including identificatibn
tasks into groups and identifies deviations from normal ex- the exact erroneous line of source code.
e_c_ution, thus significan_tly reducing debugging effort. ¢th a This paper makes technical contributionstivo broad
dition to a case study in which AutomaDeD locates a bug 4re4s First, we describa model to characterize the behav-
that occurred during development of MVAPICH, we evalu- jor of narallel applications Second, we present methods
ate AutomaDeD on a range of bugs injected into the NAS 5t compare the behavior of tasks in a parallel application
parallel benchmarks. Our results demonstrate that detects;, time and in spaceo identify the error site. AutomaDeD
the time period when a bug first manifested itself with 90% ,odels the the control flow and timing behavior of appli-

accuracy for stalls and hangs and 70% accuracy for inter- .tion tasks aSemi-Markov Models (SMMsind detects
ference faults. It identifies the subset of processes first af 5 ,1ts that affect these behaviors. States of these SMMs
fected by the fault with 80% accuracy and 70% accuracy, ygpresent regions of application code and edges represent
respgctlvely qnd the code region where where thg fault first oy o cution progress from one region to another. SMMs cap-
manifested with 90% and 50% accuracy, respectively. ture the probability of transitioning from one region to an-

other and the distribution of times spent in each region.
We delimit code regions by MPI calls and use MPI calls

1 Introduction (along with call stack information) and the computation in-
terleaved between them as two different kinds of states in
The number of cores used in large scale systems aIreadfMMS‘

exceeds million cores in the near future [7]. As a result, AutomaDeD examines how each task's SMM changes

the challenge of developing correct, high performance ap-OVer time and relates to the SMMs of other tasks to iden-
plications is also growing. When an application does not tify the task and code region where a given fault is first

complete or completes with incorrect results, the develope Manifested. First, AutomaDeD detects which time period
must identify the offending MPI task and then the portion of in the execution of the application is likely erroneous. Au-

the code in that task that caused the error. Traditionalpara ©omabeD then clusters task SMMs of that period, and per-
lel debugging tools [12, 14, 18, 23] often perform poorly at formscluster isolation which uses a novel similarity mea-

large task counts. We focus on developing a detection toolsure to identify the task(s) suffering from the fault. Figal
transition isolationdetects the transitions that were affected

*This work partially performed under the auspices of the Ih&part- by the fault more strongly or earlier than others, thus iden-
ment of Energy by Lawrence Livermore National LaboratorgemCon-

tract DE-AC52-07NA27344. (LLNL-CONF-xxxxxx). The work dhe tlfylng the code reg!on where the fault is first manifested.
Purdue authors was partially supported by the Nationalr8eidounda- In a}ddmon to focusing the developer on the root cause of
tion under grant CSR-0916337. their bug, AutomaDeD also enables the use of traditional

Offline | User: [Phases Annotation | O
» v
o Apihcat'on - | Figure 2. Example of a Semi-Markov Model
i| Task, | Task, | -+ - | Task, |
*[L I 2] [0]' Parallel Tasks Clusters
v : . Abnormal Characteristi
i aracteristic
Online PNMPI Profiler o : ~ -, 1eskE T Prransition
¥ e o O :> / > O 1=)> (Erroneous
[1 0 0 : : : region
[SMMllSMMZ] - [SMMH] ! S ! ' of the code)
= Filtering 1 Filtering 2 Filtering 3
Offline y Figure 3. Problem-size reduction with AutomaDeD
Abnormal Phases
[Abnormal Tasks] 2.1 Semi-Markov Models
Characteristic Transitions
Figure 1. Design of AutomaDeD We model the control flow and timing properties of ap-

plication tasks in order to debug common anomalies. We
i _ track control flow as a sequence of application states, de-
debuggers, such as gdb and TotalView [23] at previously fineq a5 MPI calls (including their arguments and call stack)
infeasible scales by focusing them on the time period, tasksq; the computation interleaved between them. We maintain
and code regions that are most likely to have a bug. the amount of time each task spends in each state to cap-
Our evaluation injects synthetic errors into six applica- ture temporal aspects of the states. Given the expense of
tions from the NAS Parallel Benchmark (NPB) suite [5] at maintaining full traces, we model task behavior eéSeami-
random time points and in randomly chosen tasks. The er-Markov Mode(SMM), a finite automaton of task states and
rors include delays, hangs in application tasks, interfegze transitions where the task spends a random amount of time
due to execution of an extra CPU- or memory-intensive in each state and randomly selects its next transition vith n
thread on an application compute node and message dropgdependence on its history.
and duplication. Our results demonstrate that AutomaDeD Figure 2 shows a sample SMM with edges labeled by the
correctly identifies the time period that is likely erronsdu probability of transitioning from one state to another amel t
90% of our trials for delays, hangs and message faults andprobability distribution of the time preceding the traisit
in 70% of our trials for interference faults. Given the cor- In the above SMM, tasks in stafg transition to states;
rect time period, AutomaDeD’s cluster isolation achieves 40% of the time and t®, the other 60%, with the times that
over 80% accuracy for delays and hangs, 40% for messagé@recede the transitions sampled from distributiéls and
faults and 70% accuracy for interference faults. Given the F3 2, respectively. We compute the SMM states, transitions
correct cluster, it isolates the injected transition wiht® and probability distributions from program traces capdure
accuracy for delays and hangs and 50% accuracy for inter-on-line by a PMPI-based wrapper library [20] that inter-
ference faults. cepts all calls to MPI functions. We use the observed nor-
2 malized frequency of each transition as its transition prob
ability. Section 3.1 explains how we derive time distribu-

tions.

The rest of the paper is organized as follows. Section
presents our overall approach, while Section 3 looks at the
details of our application behavior modeling methodology.
We describe the analysis performed by AutomaDeD in Sec-

tion 4 and present our experimental evaluation in Section 5. 2-2 Overview of Analysis

The SMM abstraction couples the dynamic execution of
an application with distinct regions of its code. Thus, we
2 Approach can focus the developer’s attention on the tasks and regions
of code that are behaving anomalously. Figure 3 shows the
several stages in which we accomplish this goal. First, we
As Figure 1 shows, AutomaDeD consists of both on- divide the application’s execution into a series of time pe-
line and off-line mechanisms. An on-line mechanism gath- riods calledphases Naturally, applications behave accord-
ers data about executions into an SMM database. Au-ing to a repetitive pattern for periods of time and then their
tomaDeD’s off-line mechanisms then use this data to derivebehavior changes, to a different repetitive pattern or some
a deeper understanding of the application behavior, partic random pattern. We divide the period of time of repetitive
larly when bugs are manifested. behavior into smaller time periods, which we call phases.

——~

Thus, across the phases within one repetitive pattern bound Data 1& i N M %% o :"‘,
L . L Samples 0/, 08 ¢o D .

ary, we expect the application behavior to be statistically ———

identical. AutomaDeD then computes an SMM for each ot

task within each phase and then clusters the SMMs for each Histogram Line Conneczors

phase. This clustering may partition the tasks based on cor- Bucket

rect differences between them, such as with master-slave ~ €ounts :U\ < H ™ Gauss'a" el
applications that have two correct partitions. Alterneliy e

it may identify behavioral differences due to a bug. Au- Time Values

tomaDeD either compares a task's SMMs from different Figure 4. Example of histogram construction

phases or the task clustering from different phases to de-
termine the phase during which a bug is first manifested. It the mean and standard deviation of the data points. Second,
can also compare SMMs or their clusterings to those fromit is a well-known distribution with a rich theory. However,
prior, correct executions. If no sample runs are available, a Gaussian distribution is not appropriate for state transi
AutomaDeD calibrates its bug detection algorithms basedtions that have multi-modal or asymmetric behavior. The
on the first phase, which works well in practice because weformer can occur when different code within a compute re-
target rare, hard to find bugs, which manifest themselvesgion is executed at different times and the latter occurswhe
after a few iterations of the main processing loop. the time that precedes a transition is consistent except for
Once AutomaDeD identifies a faulty phase, it proceeds spikes due to system or network interference.
to identify the task cluster or individual task in which the Histograms provide a more detailed fit to the observed
bug is first manifested. AutomaDeD compares SMMs or data. The basic approach, which Figure 4 shows, divides
clusters across phases to identify the SMM or cluster thatthe observed data points into a number of equal-sized buck-
has changed the most from the normal phases. AutomaDelts. The probability of a particular bucket is the fractidn o
can again use SMMs or clusters from prior, correct execu-data points within it. Since timing data may have outliers
tions or earlier phases of the same execution. AutomaDeDorders or magnitude above the median, equal-sized buckets
also compares the individual state transitions within the can aggregate most data points into a single bucket, pro-
faulty phase to find the first unusual transition, which may viding poor resolution. We therefore used variable-sized
identify the error site. Alternatively, the mostunusualM puckets via an online clustering algorithm. We assign each
transition of the faulty task may identify it. new data point to its own bucket. If the resulting number of
Thus, AutomaDeD iteratively focuses the developer's pyckets rises above a threshold, we merge the two buckets
debugging efforts. First, it identifies the faulty execuatio with the closest means. We derive a continuous probabil-
phase. Then it finds the faulty task or group of tasks. Fi- ity distribution from the discrete histogram by linearlynco
nally, it locates the error site. The granularity of thisnde necting adjoining bucket counts and modeling the regions
tification is a state in the SMM. Thus, AutomaDefes beyond the smallest and largest buckets using the lower and
notidentify the root cause of the error and cannot identify upper halves of Gaussian distributions, which models the
the manifestation to a very fine granularity, such as line of probability of observing new extreme values.
code. However, it does significantly reduce the amount of The pasic tradeoff between these two distributions is that
information that must be considered when performing a rOOtGaussians are Cheaper (|n terms of Computation and mem-

cause analysis. ory cost to create and to query) and more constrained while
histograms are more expensive but very flexible. Evaluating
3 SMM Mechanisms both options provides significant information about the ba-

sic tradeoffs of this design parameter, thus illuminatimg t
potential of other statistical models such as mixed-Ganssi
distributions and Kernel Density Methods [21].

We consider two methods for deriving the time proba-
bility distributions that explain the time spent by a task in 3-2 Comparing Task SMMs
the SMM states. In one, we assume that the time values
follow a Gaussian distribution. In the other, we compute a AutomaDeD detects faulty phases and tasks and per-
histogram of ranges of the observed time values, instead offorms task clustering by comparing SMMs to each other.
assuming a particular distribution. We define an SMM distance metric that reflects the differ-
Assuming Gaussian distribution has several advantagesences between the control flow and timing behaviors of their
First, we can easily calculate the parameters of a Gaus+espective tasks. The difference between two SMMs is the
sian distribution given enough sample points. By using sum of the differences in their transition probabilitiesian
maximume-likelihood estimation, we only need to calculate transition time distributions.

3.1 Creating Time Distributions

Given two SMMsA and B, let S, andSp be their sets where|pairs(t, M)| is the number of SMM pairs in/ that
of states, an’y andT's be their sets of transitions. Also let both have transition. In the absence of sample rumsfor
ds,; be the state transition probability distribution for state a given transition in a given phase of the faulty run is com-
s € S;, and letd, ; be the time probability distribution for puted by summing over SMMs in the run’s other phases.
transitiont € T;. The difference betweeA andB is: This weighting scheme overcomes a commonly ob-
1 served effect where certain transitions have multi-modal
Diff(A,B) = ZD(ds,A, ds.B) + > Z D(di a,di,B) timing characteristics—very consistent timing behavior

sE€S teT within each mode and sudden shifts to a different mode ei-
whereS = S USp, T = T4 U Tg, D(dy 4, dy.5) is the ther within a given run or across m_ultiple runs. This may be
difference between a pair of probability distributiofs caused for example by a computation that executes the same

andd,. 5, wherer is a state or transition corresponds to set of instructions bqt takes very different times depegldin

a weighting factor defined in Section 3.3 that weighs differ- ©1 Whether the data is cached or not. For such behavior, the
ences on transitions with consistent timing behavior above Value ofv will be high, thereby weighing down the differ-
those with poor information content. We define the metric €Nc€ metrid).

D(d, a,d,) as: .
' 3.4 Clustering Tasks’ Models

Lo(droa,dr) *a ifre Aandr € B
D(dr,Av d'r‘,B) - ’ 10 ’ th : . . .
otherwise AutomaDeD detects behavioral clusters by using Hierar-
Lo(dra,dy) is the L, norm between the chical Agglomerative Clustering (HAC) [10] on the SMMs

o T o of all application tasks. HAC initially sets each task to be
probability distributions - [15], Lx(dr,, dr.5) in its own cluster. During each iteration, HAC merges the
two most similar clusters into a single cluster, so that & ha
one cluster less after that iteration. Cluster differesags-
fined as the smallest difference between any member of one
cluster to any member of the other cluster. These steps are
repeated until the minimum difference between any pair of

ttd, 4 — d, 5| clusters is above a given threshold (i.e., no two clustess ar
(v + Hdy 5)/2 similar enough to merge).

HAC requires a threshold that defines the normal differ-
ence of similar tasks. AutomaDeD chooses this threshold
: i by having the developer provide the number of clusters that
and states that appear in bothl andB. As such, ifr ap- ccyrately describe the application’s expected behavr.
pears in one but not the othe,(d, 4, d,,p) Was setto 10 gyample “a relaxation algorithm with non-periodic bound-
to make differences in application control flow more signif- jes operating on an 2-dimensional grid is best described
icant than differences in its timing behavior. by a 9 clusters (one for the interior, and one for each side
and each corner region). However, it should have a single
cluster if the boundaries are periodic. AutomaDeD applies
HAC on SMMs of a set of training phases (assumed to have

_ Different SMM transitions will have very differenttim- ¢o\y, 1ygs), identifying the average threshold that produces
ing properties, with a variety of means, standard deviation ¢ gesired number of clusters. We use this threshold for

and distribution shapes. Differences between SMMs on agpsequent clustering. If sample runs of the applicatien ar
transition that has consistent timing and a tightly focused provided, AutomaDeD trains on phases in these runs. Oth-

d_is_tribytion_can be very informative. In contrast, if thartr erwise, it trains on the given run's first phase, which we
sition is noisy, the differences are most likely due to sys- 5osumed is fault-free.

tem interference. AutomaDeD focuses on the Cf"t'cal d”f,' The resulting clustering organizes tasks into behavioral
ferences between two SMMs by looking at the "normal” g6, s that reflect the effect of the bug on the application’s
difference between the SSMs of a sample set and weightingyehayior, This helps to identify the time and the location
D(dy,a,d:, p) accordingly. Thus, given a transitigrand a when the fault was first manifested.

setM of sample SMMs, we define the weighting factor

as the root-mean-square bf on this transition among the

75 ldra(j) — drs(4)|?°dj. The integral is over the
space of possible events (state transitions or transition
times).The parameter gives greater weight to differences
in time distribution with distant meang,; and ug.. For
time distributions it is equal to

a=1+

anda = 1 for state transition distributions.
In most casedD(d, 4, d,) is below 10 for transitions

3.3 Normalized SMM Comparison

members of\/ 4 Error Detection Procedure
| X apemazp D(dia,diB)? We describe the procedure that a user employs to isolate
B |pairs(t, M) a bug using AutomaDeD. Figure 1 shows the complete se-

guence of stepgOn-linesteps occur when the program ex- the other phases in the faulty run.
ecutes, whileoff-line steps occur after execution. The next If the effects are permanent (e.g., a runaway thread that

sections describe each step. interferes with the application), AutomaDeD identifies the
phase when application behavior shifted. If AutomaDeD
4.1 Phases and Epochs has sample runs, it computes deviation scores as above but

then uses k-Means Clustering [10] to divide the phases into
AutomaDeD models the behavior of discrete regions WO clusters: those that are similar to the sample runs (low
of application execution that the developer identifies via deviation) and those that are different (high deviationg W
source code markers. The tephasedenotes a region of ~ identify the earliest phase in the high deviation cluster as
execution, such as a time step, that repeats multiple timesfaulty. Without sample runs, AutomaDeD identifies the
Phases are grouped imibase set s, where all phasesin Pair of adjacent .phas.es that are most different accordimg .th
a set are assumed to behave similarly to each other. For exSMM or clustering difference metrics. The later phase in
ample, adaptive mesh refinement applications periodicallythis pair is judged to be faulty.
re-partition their work and meshes. Thus, individual itera
tions may be identified as phases while iterations betweerd.3 Pinpointing Faulty Task(s) and Error
adjacent re-partitionings may be grouped into a set. Devel- Sites Using SMM Analysis
opers annotate phases and phase sets in their code by adding
calls toMPI _Pcont r ol , a special function call that is in- AutomaDeD provides two complementary mechanisms
tercepted by our wrapper library. to identify the faulty task(s) and the error site. We deserib
the first mechanism, which compares SMMs and cluster-
4.2 Faulty Phase Detection ings, here. We discuss the second, which is based on in-
dividual transitions, in Section 4.4. Successful iderdific
AutomaDeD detects the phase during which a fault was tion of the faulty cluster greatly simplifies determiningth
first manifested using one of two algorithms, depending on root cause. Cluster isolation is particularly helpful witiee
how it effects application behavior. Currently the user of manifestation of a bug results in a cluster with a single.task
AutomaDeD must try both faulty phase selection mecha- AutomaDeD clusters the tasks of the faulty phase and
nisms. We leave automation of this selection to future work. then identifies the most unusual cluster by computing its
If the effects are temporary (e.g., temporary delay due to deviation from the other clusters. If we have a set of sample
unusual erroneous control flow), AutomaDeD searches forruns, we compare each cluster to them using the SMM or
the phase that differs from all other phases. If AutomaDeD clustering difference metric (comparison is focused on the
has a set of sample runs, it compares each phase to its courphase identified as faulty). The SMM cluster difference is
terparts in those runs. It can either compare each task’ssimply the sum of the squared SMM differences between
SMM directly to its sample counterpart or it may compare the SMMs of member tasks in the faulty phase and their
each phase’s clustering to the clustering of its countérpar SMMs in the same phase of a given sample run, divided by
phase. For the former we use the SMM difference metric the number of tasks. The clustering difference metric is a
from Section 3.2, with the difference between two phases variant of the Mirkin difference where the deviation from
defined as the squared sum of the differences between theisample phase clusteriig = {c}, ...c;,} of test cluster is
respective task SMMs. For the latter we use the Mirkin dif- the fraction of its member task pairs that appear in differ-
ference metric [17], which is the fraction of task pairs that ent clusters irC’. Each cluster’s overall deviation score is
are grouped differently in the two clusterings, (i.e., task then the squared sum of its differences with respect all the
T, andT; are in the same cluster in one clustering and not sample runs. If no sample runs are provided each cluster is
in the same cluster in the second, or vice-versa). Then forcompared as above but to the other phases of the faulty run
each phase we compute a “deviation score”, which is theinstead of the same phase of the sample runs.
sum of the squared distances from this phase in the faulty We also locate the error site based on task clustering
run to the same phase in the sample runs. We identify thewhen we identify thecharacteristic transition(CT), the
phase with the highest deviation score as faulty. If no sam-transition that most distinguishes the faulty cluster fritwa
ple runs are provided, AutomaDeD compares each phase t@ther clusters. Since bugs can cause these behaviorai diffe
all others within the faulty run using either of the above-met ences, CTs direct developers to the root cause.
rics to compute each phase’s deviation score. We identify For SMMs A and B, we defineCT(A, B) as (t, x)
the phase that differs most from the others as faulty. Whenwheret is transition that most contributes to the dissimilar-
sample runs are provided,weighting terms are computed ity metric Dif f(A, B) andy is the magnitude of this con-
from the SMMs of these runs. When they are not provided, tribution. Given a clustet = {M;, M>, ..., M,, }, we com-
thev used for each phase’s comparisons is computed frompute the cluster's CT by evaluatigT'(M;, M) for each

5

pair (M; € ¢, M} ¢ c). The CT ofc is then the transition
that is the CT of the most SMM pairs. If this selects more
than one transition, the CT is transition with the largest av
erage contribution magnitude. Since this method does not
always produce the correct faulty transition as the top CT,
AutomaDeD can also present the top several choices to the
developer for closer examination.

Cluster 1, Tasks {0, 1, 3, 5, 7, 8}

4.4 Detection Using Transition Analysis Cluster 2, Task {6}

Our SMM-based cluster and transition isolation methods /' Ces
are too coarse if the effects of the bug propagate to the en- c

tire application and will fail to identify the first task(shd
transitions that the bug impacted. We can overcome this dif-
ficulty by observing individual state transitions, lookifay

the first that takes an unusual amount of time compared to
the transition behavior seen in sample runs or earlier ghase

If the faulty effects are temporary, AutomaDeD com- gjysted by a factor that proportionally compensates for th
putes the typical behavior of each SMM transition as a prob- gjfference in their timestamps or it has a later timestamp

times in the sample runs or first phase, after discarding the

top and bottom 1% of the times. AutomaDeD uses thesey 5 Visualization of Results
distributions to compute the probability of observing the
time preceding each transition of the faulty phase. We then

identify low probability transitions through K-Means clus regits through the clustered SMMs of the faulty phase, fo-
tering with K = 2, using the log of the probability to im- ¢ ;sing on the faulty cluster and the CT. Figure 5 shows an
prove sensitivity to low values. We select the earliest low example of the output for a 9 task NAS benchmark BT when
probability transition as the CT, which also identifies the 5 10 second delay was injected into task 6 before execution
faulty task. AutomaDeD can also present later low proba- 4 the selectedPl | send (we show only a portion of the
bility transitions on other tasks in case the starting timies SMM). Bold edges indicate the CTs; the clusters appear as
the transitions do not correctly identify the CT. their labels. The cluster associated with the edge (Compu-

If the faulty effects are permanent, AutomaDeD 100ks (4tjon, |send-DOUBLE) corresponds to the faulty cluster.
for a sudden change from one type of application behav-

ior to another. Specifically, it scans each transitiom
each task SMMM to locate the largest increase n=
stdDev(t) * 7, wherestdDev(t) is the standard deviation
in the observed times preceding When sample runs are
provided 7 = 1, wherev is the noise weighting factor dis- . _
cussed in Section 3.3. Otherwise= stdDev(t), which is We empirically evaluate the effectiveness of Au-
another way to reduce the algorithm’s sensitivity to ouslie ~ tomaDeD by injecting synthetic faults into six applicaton
¢ measures the variation of the transition, which in- in the NAS Parallel Benchmark suite: BT, CG, FT, MG,

creases significantly when its behavior changes, as its prio LU @and SP [5]. We omitted EP because it performs almost
behavior does not predict its new behavior well. Au- N0 MPIcommunication and IS because it uses MPI in only
tomaDeD selects the transition that provides the best bal-2 féw locations in the code, making MPI-based state de-
ance between occurring before other transitions and havingnarcation inappropriate. Our fault injector, built on tdp o

a highd. This is done by comparing transitionsand ¢’ MPI, dynamically injects a wide array of software faults
using to the following relation: at random MPI calls during MPI application runs. It sup-

ports three main classes of faults:

Figure 5. Output format of AutomaDeD after the debug-
ging process is completed.

AutomaDeD presents the cluster and transition isolation

5 Experimental Evaluation

5.1 Fault Injection Types

05 (141, —ty) >0
0 5 (14t —t),) >0

if trs < t;s

L e Local livelock/deadlock or transient stall; emulated via
if trs < tis

(1) = (t0) =
a finite loop of 1, 5 or 10 secondBI(N_.LOOP) or an

wheret;, andt;, are the timestamps ofand¢’. Thus, we
considert a better choice (ordered larger) thaiif either it
has an earlier timestamp afids larger thart’ after being

infinite loop (NF_LOOP)

e MPI message loss and duplication; emulated by drop-
ping (DROP_MESG) or repeating REP_VESG) a single

MPI message, 5.2.1 Detection of the Faulty Phase

e Extra CPU- or Memory-intensive thread; emulated by We begin by evaluating AutomaDeD’s ability to detect the
starting up a thread with a perpetual-increment loop phase in which the fault was injected. If AutomaDeD does
(CPU_THR) or a loop that randomly reads from/writes not have sample runs, the algorithm identifies the phase that
to a 1GB region of memoryMEM.THR), that interfere is most different from the others using either the cluster-
with the remainder of the application’s execution. based metric or the individual task SMM-based metric. If

it has sample runs, AutomaDeD use one of these metrics to

A and 16 tasks. We executed all tasks on four-socket,determine the phase that is most different from its counter-

qguad-core nodes (the Hera cluster at LLNL), with 2.3Ghz part_in those sample runs. .
Opteron processors and 32GB RAM per node. We injected Figure 6 shows the average accuracy over all applica-
each fault type into a random task and MPI operation type 10nS Of faulty phase detection. All of our graphs show
(Blocking and Non-Blocking Sends and Receives, All-to- the runs on the Y-axis in which AutomaDeD identifies the

Alls, etc.), ensuring that over the entire experiment, each phase, clustgr or transition reIeve}nt to the injecteq J‘aullt
task and MPI operation type was injected with each fault The data series correspond to using the two metrics with

type. For each case, we performed at least 10 random in-€3¢ sample run configuratiofgul t Free, Faul t 10
jection runs, totaling approximately 2,000 injection esipe and NoSanpl e) and the different distribution methods

ments per application. In each run we injected a single fault US€d for the times preceding transitioi&gssi an and
into a random instance of the target operation type on a ranH st ogr am.)
dom task. The execution of each application was partitioned W& observe that the SMM-based metric detects faulty

into approximately 5 phases; the exact number depended ofN2S€S more accurately th?n the cluster-based one, with
the application’s original iteration count. detection accuracy over 90% for most fault types. How-

ever, the cluster-based metric better det€fE._THR and
MEMTHR when sample runs are available. In general,
sample runs significantly improve faulty phase detection
accuracy, withFaul t Fr ee andFaul t 10 generally ex-
We evaluate the accuracy of AutomaDeD in identifying ceedingNoSanpl e by 20%-30%. The difference is even

Our experiments ran each benchmark with input size

5.2 Results of Debugging Faults

the following aspects of the injected fault: larger for CPU_.THR and MEM. THR. Further,Faul t Fr ee
. o andFaul t 10 sample runs provide similar accuracy, which
e The phase with the injected fault (faulty phase) suggests that moderate noise levels do not impact the SMM

representation and AutomaDeD'’s analyses significantly. Fi
nally, SMMs based ohii st ogr ams produce consistently
more accurate (by several percent) phase detection results
e The error site of the injected fault (transition isolation) than those based oBaussi an probability distributions
because they are less sensitive to noise such as outliers. We
We evaluate AutomaDeD with and without sample runs. observe similar trends for cluster and transition isotatio
Using sample runs corresponds to when the developer can Figure 7 shows faulty phase detection accuracy on a per-
execute an application multiple times to establish its nor- application basis, focusing on SMMs that lfest ogr am
mal behavior before analyzing a given faulty run. We eval- The data shows that detection accuracy depends strongly on
uate two types of sample runs. For each applicaion the application. Further, the SMM-based metric has poorer
the Faul t Fr ee(A) set consists of 20 runs with no in- accuracy withCPU_.THR andMEM.THR primarily due to its
jected faults, which models an ideal set of sample runs. Thepoor results on MG, BT and SP, while it provides higher
Faul t 10(A, F) setincludesraul t Free(A) as well accuracy for FT than does the cluster-based metric. The
as 2 additional runs @kin which faultF was injected. This SMM-based metric is more accurate for other faults because
set models the more common case where application runst performs more consistently across the applications. Fi-
are affected by an infrequent non-deterministic bug that af nally, sample runs are essential for the cluster-basedanetr
fects a certain fraction of runs (in this cas@0%). Our ex- while the SMM-based metric still provides reasonable ac-
periments that do not use sample runs, denbieshnpl e, curacy on the other fault types without them.
omit any runs in which faults were injected during the
first phase in order to ensure a more informative evalua-
tion. We also omit such runs when analyzioigU_THR and
MEMTHR faults, regardless of whether or not sample runs Once AutomaDeD identifies the faulty phase, its cluster iso-
are provided, since they provide no information about the lation can help locate the root cause of the bug by showing
application’s behavior before the fault. the cluster that contains the task where the bug was injected

e The cluster that contains the task with the injected fault
(cluster isolation)

5.2.2 Cluster Isolation

Clustering Difference

SMM Difference

B Fault10- Gauss

D Fault10- Histogram

B NoFault - Gauss

W NoFault - Histogram
B NoSample - Gauss

0 NoSample - Histogram

¢ &
< S
< <&

o s N

S & 5
& N &
& &

Figure 6. Average faulty phase detection accuracy

i . -
mBT
& & > S
& @&/ &7 S e?’ooq e?ﬁ \°°Q & Boa
D & < & mFT
SMM Diff Fault10 mw
ifference, Fault
100% - EL
80% I osP
60% i I
408
20%
0%
& & & & > 3 N
IOUNIC R S N
& S & > Y ¥ &
~ & & & & &7 N

Q

SMM Difference, NoSample

O > 2 O
bl QS“P & & &S
& & & F &
B S &

Figure 7. Faulty phase accuracy per application

AutomaDeD again uses the SMM-based and cluster—base%

metrics to perform cluster isolation. Alternatively, itrca
examine the individual transitions within the faulty ph&se
identify those that are unlikely given the probability dist
bution on the transition. Our evaluation measures the accu
racy of AutomaDeD'’s cluster isolation separately from that
of its faulty phase detection by always applying the tech-

perfect results on half the applications. The abnormaltran
sition method achieves high accuracy for thleN L OOP
andl NF_LOOP using sample runs.

In general, the accuracy of cluster isolation varies widely
across the applications for the same fault type since the
faults can propagate themselves quickly from one task to
another. Thus, some task(s) other than the faulty task may
exhibit behavior the most divergent from its normal activit
which can cause the cluster-based and SMM-based metrics
to mis-identify them as the source of the fault. While task
behavior does not confuse the abnormal transition method,
it can perform poorly due to the relatively coarse grantyari
of SMM transitions. As such, a fault may propagate from a
transition with a later starting timestamp to one that began
earlier, causing the wrong transition to be identified as the
fault’s first manifestation. We could reduce this effect by
breaking long states into smaller ones, which will improve
their precision.

Figure 9 shows the percentage of runs (using the
Faul t 10 sample run configuration) in which the faulty
task cluster consists of only one faulty task. Preciselpide
tifying the faulty makes significantly easier for developer
to identify the bug since narrows it down to a single task’s
control and data flow. AutomaDeD fully isolates the faulty
task in more than 90% of the cases@U_THR, MEM THR,
DROP_MESG and REP_MESG and 70% forFI N_LOOP and
| NF_LOOP. In contrast to prior results, usifgaussi an
distributions for the times preceding transitions progide
reater accuracy because they are more sensitive to sutlier
which suggests that both probability distributions shdéd
used in practice.

5.2.3 Transition Isolation

AutomaDeD uses two algorithms for transition isolation.

niques to the faulty phase, that is we assume the phase deFirst, it compares the SMMs of the faulty cluster to those

tection was accurate.

Figure 8 shows the accuracy of AutomaDeD’s cluster
isolation on a per-application basis, focusing on SMMs that
useHi st ogr am Cluster isolation using the cluster-based
metric has poor accuracy for nearly all applications and
fault types. The other options produce significantly better
results. The abnormal transition method without sample

of other clusters and selects the transitions most responsi
ble for the differences. Alternatively, it selects the et
abnormal transition within the faulty cluster. Since ouabo

is to focus debugging efforts, we consider how frequently
the faulty transition is the top choice or one of the top five
choices of these methods. Figure 10 shows the results, with
the clustering-based algorithm on the left and the traomsiti

runs and the SMM-based metric with sample runs provide based algorithm on the right.

the best accuracy foePU_THR and VMEM.THR, with near

The clustering-based algorithm consistently 0% of

Clustering Difference, Fault10 100%
100%

60% 1

* s el
||ri|r||!||||||'
Ll

& & ¢ ¢ S $

4 4 &/ 6/

3
& & N e7db & v S S &
S S & < K & <

N

o) 8
= 8~ &£

S & Y

> N

S &

o
&

SMM Difference, Fault 10 Figure 9. Isolation of a singleton cluster

100%
80%

tion being debugged while simultaneously executing a 16-
task run of either LU, MG or SP on the same set of nodes
as the previous runaway tasks). These experiments cover
T the cases where runaway tasks interfere with either all or a
IR noG subset of the application’s tasks.
mFT We provided AutomaDeD with a set of five sample runs
Abnormal Transition- Fault10 mLw of BT with no interference. Figure 11 presents average the
1008 ;:,G SMM-based metric that AutomaDeD determines for each
] n phase of three runs where BT ran concurrently with either
w0 | LU, MG and SP (one set for 16-task and another for 64-
20% 1 task BT runs) as well as the average score for the five no-
0% . N . interference runs. The sets of sample runs used to com-
Gf @@fb ﬁ"" &Qs* K T pute each no-interference run’s deviation scores excluded
° the run itself. The deviation scores of all no-interference
Abnormal Transition- NoSample phases were consistently low. In contrast, the scores of the
initial phases of the three interference runs show high-devi
ation scores, identifying the exact region of time when the
shorter runs of LU, MG and SP overlapped with the exe-
cution of BT. Further, AutomaDeD clearly shows that the
interferfence run of MG in one 16-task experiment began
& & S e after the first phase of BT, since the deviation score starts a
N & T the baseline level, rises for three phases and then drops to
the baseline.

AutomaDeD significantly aids debugging. First, it
clearly identifies the performance anomaly, which might not
have been noticed for a long time or blamed on extraneous
factors such as network load or choice of input. Second, Au-
tomaDeD determines when the interference occurs, which
facilitates detection of the interference tasks from syste
logs or other methods. Although AutomaDeD can often
jdentify the tasks most affected by the fault, it did notédel
hose tasks in this case since BT is tightly coupled, which
leads to the interference tasks impacting all of BT's tasks
even with 64-task runs.

60%
40%

20%

PR M

80%

60%

40%

20%

Figure 8. Cluster isolation accuracy per application

the time) includes the faulty transition in its top five chesc
for FI NLLOOP andl NF_LQOOP. The transition-based algo-
rithm is less consistent across applications but when i suc
ceeds, it usually does so with its first selection. Both meth-
ods exhibit low accuracy fdbROP_MESG and REP_MVESG
faults because their effects manifest long after the fauft-i
jected. They also perform relatively poorly wi@PU_THR
andMEM THR because these faults cause sudden behaviora
changes that resemble ordinary outlier transitions.

5.3 Case Study: MVAPICH Bug

We illustrate the utility of AutomaDeD via a case study 6 Prior Work

of applying it to a real bug in the MVAPICH-0.9.9 MPI im-

plementation [19]. The bug occurs in its MPI task launcher, Traditional debugging techniques, including sequential
mpirun, which sometimes fails to clean up after an appli- debuggers such as gdb and “printf debugging,” require
cation, leaving processes to run concurrently with subse-the user to identify coding errors and to trace their ori-
guent jobs. We evaluated AutomaDeD on this bug, which is gins manually. Traditional parallel debuggers, such as To-
similar in effect to our CPU- and Memory-intensive thread talView [23] and DDT [2], are similar, although these tools
faults, by executing a 16- or 64-task run of as the applica- must control multiple processes concurrently and aggeegat

Clustering Abnormal Transition WBT-top 1
@mBT-top 5
m0G-top 1
m0G-top 5
BFT-top1
OFT-top5
BLW-top1
OW-top5
BMG-top1
mMG-top5
Ry b3 ¥ mSP-top 1
& ’ ’ ’ OSP-top 5

100% 100%

80%

60%

Figure 10. Transition isolation accuracy per application

16-process BT 64-task BT
1E+5 1E+5

1644 |t

1E+4

1643
1E+2 #‘%ﬁ

1E+1

=¢=Average
No-Interference
ConcurrentSP

==h=ConcurrentLU

=é=Concurrent MG

1E+3

1E+2 o

SMM Deviation Score
SMM Deviation Score

1E+1

1E+0 T T T T T T T T T " 1E+0

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6
Phase Phase

Figure 11. Phase deviation scores of MVAPICH bug use-case

8 9 10

the distributed state. They provide convenient interfaoes their behaviors are distinct. For example, two processes ca
that state but the process of identifying errors remains-man exhibit the same stack trace despite having very divergent
ual. Overall, traditional debugging techniques requiriga s timing characteristics and the timing characteristic oé on
nificant amount of user experience, intuition, and time, and of the processes indicates that it is erroneous. Hence, Au-
thus are not practical for large, complex parallel applica- tomaDeD considers extensions over function-based equiva-
tions. lence classes through the use of SMMs with state transition
Differential debugging provides a semi-automated ap- probabilities and timing distributions. Further, distifrom
proach to the analysis and understanding of programmingprior work, we also drill down and identify the code region
errors by comparing executions dynamically [1, 24]. Recent that causes the divergence, thus providing a guidance to the
research has focused on developing statistical techniques developer to look for errors.
pinpoint the root cause of correctness problems automati- Liu et al. present BS, which provides users with a
cally [3, 6, 8, 9]. While both approaches hold significant model to write predicates on properties that they wish to
promise, they require extensive runtime execution data of-check at runtime [13]. The system provides a scalable
ten from multiple runs or extensions that guide the analy- means to verify the properties, and tolerates failures ef th
ses to the significant differences between the processes ithecking and the checked machines. The P2 monitor [22]
a single run. As a result, most techniques have not yetis similar in spirit to 3'S—differences lie in the level of
been applied to large scale runs of parallel applications.automation in collecting distributed state and support for
AutomaDeD complements these techniques by providinglegacy applications. All of this prior work differs from aar
mechanisms that relate the state across the individual proin that they focus on detecting when a property gets vio-
cesses and group ones with similar behavior into task equiv-lated, with the property being well understood and specified
alence classes. by the user prior to execution while we do not require the
Our previous work developed the Stack Trace Analysis user to provide such knowledge.
Tool (STAT) [4, 11], which provides scalable task equiva- We share similar goals to those of the work by Mirgorod-
lence class detection based on the functions that the proskiy et al.[16], namely, locating the causes of anomalies in
cesses execute. Specifically, STAT gathers stack traceparallel programs. Their model looks at the traces of func-
across tasks and over time and merges the traces into a catlon calls and exits and uses a distance metric to identify
graph prefix tree, from which it identifies task equivalence the trace that is most different from other traces. Subse-
classes. STAT's stack trace analysis is useful for diagngpsi quently, they identify the function that most contributes t
certain classes of errors. STAT can quickly identify when a the suspect score for the outlier trace in order to pinpoint
small subset of tasks has diverged from the rest of the ap-the likely source of the problem. Despite these similasitie
plication. However, these classes can group processes whetheir work addresses a subset of the anomalies that we do in

10

AutomaDeD since they assume all processes have identical[4]
behavior and they do not consider timing anomalies.

7 Conclusion [5]

Large-scale application debugging is very challenging [6]
because of the vast amount of information developers must
consider to identify a bug’s root cause. AutomaDeD fo-
cuses debugging efforts on the time period, tasks and codel”]
region where the bug is first manifested. Thus, it signif- (8]
icantly improves developer debugging productivity by re-
ducing the amount of information that must be considered
even as the application is scaled to large task counts. This
paper describes the fundamental approach and design of
AutomaDeD and establishes it as a valuable addition to
the developer’s toolkit. Our results demonstrate that Au-
tomaDeD is very accurate for key debugging tasks. In par-
ticular, it correctly identifies the faulty phase in 90% ofou [17)
trials for delays, hangs and message faults and in 70% of
our trials for interference faults. Given the faulty pha%se;
tomaDeD’s accurately identifies a small task set (often-a sin
gle task) in which the bug occurred for over 80% of delays [12]
and hangs, over 40% for message faults and over 70% for
interference faults. Given the faulty cluster, AutomaDeD
identifies the error site with 90% accuracy for delays and [13]
hangs and 50% accuracy for interference faults.

While this paper demonstrates the utility of our ap- (14
proach, a key component of our ongoing work is to make
these ideas work at large scale. This includes developing
more efficient algorithms for our basic mechanisms such (15
as histograms and SMM comparisons, as well as scalablﬁm]
methods to cluster SMMs on-line across millions of tasks.
While this work will leverage the algorithms presented here
it will involve the development on novel statistical model- [17]
ing techniques that can scale to millions of tasks. Another (18]
important area will be extending AutomaDeD to model a
richer space of behaviors, including analyzing behavioral [19]
metrics other than control flow and time as well as mod-
eling more complex applications. This work will enable [20]
AutomaDeD to become a valuable debugging tool for de-
velopers of large scale applications that will make them sig
nificantly more productive even as their applications scalel
to ever more tasks. [22]

El

[10]

References
[23]

[1] ABRAMSON, D., FOSTER I., MICHALAKES, J., AND SociIC R.
Relative Debugging: A New Methodology for Debugging Sdient
Appl ications. Communications of the ACM 321 (1996), 69-77.

[2] ALLINEA SOFTWARE Allinea DDT the Distributed Debugging
Tool.

ANDRZEJEWSK|, D., MULHERN, A., LIBLIT, B., AND ZHU, X.
Statistical Debugging Using Latent Topic Models.18th European
Conference on Machine Learnii§ept. 17-21 2007), S. Matwin and
D. Mladenic, Eds.

[24]

(3]

11

ARNOLD, D. C., AHN, D. H., DE SUPINSKI, B. R., LEE, G. L.,
MILLER, B. P.,AND SCcHULZz, M. Stack Trace Analysis for Large
Scale Debugging. Iithe International Parallel and Distributed Pro-
cessing Symposiu(2007).

BAILEY, D., BARTON, J., LASINSKI, T., AND SIMON, H. The NAS
Parallel Benchmarks. RNR-91-002, NASA Ames Research Gente
Aug. 1991.

CHiLimBl, T., LIBLIT, B., MEHRA, K., NORI, A., AND VASWANI,

K. HoLMES: Effective Statistical Debugging via Efficient Path Pro-
filing. In 31st International Conference on Software Engineering
(ICSE)(May 2009).

FELDMAN, M. Lawrence Livermore Prepares for 20 Petaflop Blue
Gene/Q. InrHPCwire (Feb. 2009).

GAo, Q., QN, F.,AND PANDA, D. K. DMTracker: Finding Bugs
in Large-Scale Parallel Programs by Detecting Anomaly iraDa
Movements. IACM/IEEE Supercomputing Conference ($£25)07),
ACM, pp. 1-12.

HANGAL, S.,AND LAM, M. S. Tracking Down Software Bugs
Using Automatic Anomaly Detection. IKCSE '02: Proceedings of
the 24th International Conference on Sof tware Enginee(2@p2),
ACM, pp. 291-301.

JAIN, A. K., MURTY, M. N., AND FLYNN, P. J. Data Clustering:
A Review. ACM Computing Surveys 33 (1999), 264—-323.

LEE, G. L., AHN, D. H., ARNOLD, D. C.,DE SUPINSKI, B. R.,
MILLER, B. P.,AND ScHuULZ, M. Benchmarking the Stack Trace
Analysis Tool for BlueGene/L. Irinternational Conference on
Parallel Computing: Architectures, Algorithms and Applions
(ParCo)(2007).

LINDEKUGEL, K., DIGIROLAMO, A., AND STANZIONE, D. Ar-

chitecture for an Offline Parallel Debugger. limternational Sym-
posium on Parallel and Distributed Processing with Appiicas

(ISPA)(Dec 2008), pp. 227-235.

Liu, X., Guo, Z., WANG, X., AND CHEN, F. D*S: Debugging De-
ployed Distributed Systems. MSENIX Symposium on Networked
System Design and Implementation (NSR008), pp. 423-437.

] LOUREN@, J.,AND CUNHA, J. C. Fiddle: A Flexible Distributed

Debugging Architecture. linternational Conference on Computa-
tional Science (ICCS)-Part I[2001), Springer-Verlag, pp. 821-830.

] MANNING, C. D.,AND SCHTZE, H. Foundations of Statistical Nat-

ural Language ProcessingCambridge, Mass: MIT Press, 1999.

MIRGORODSKIY, A., MARUYAMA , N., AND MILLER, B. Problem
Diagnosis in Large-Scale Computing Environments AGM/IEEE
Supercomputing Conference (S2906), pp. 11-23.

MIRKIN, B. G.Mathematical Classification and Clusterinigluwer
Academic Press, 1996.

MPIPLUGIN. MPI Plugin for KDevelop.
/] sour cef orge. net/ projects/npiplugin/.

MVAPICH PROJECT MVAPICH Discussion
http://mail.cse. ohi o- state. edu/ pi permail/
nmvapi ch- di scuss/ 2007- Jul y/ 000932. ht m .

ScHULZ, M., AND DE SUPINSKI, B. R. PNMPI Tools: A Whole
Lot Greater Than the Sum of Their Parts. AGM/IEEE Supercom-
puting Conference (SQ2007), ACM, pp. 1-10.

http:

List.

21] SILVERMAN, B. W. Density Estimation for Statistics and Data Anal-

ysis Chapman & Hall, 1986.

SINGH, A., MANIATIS, P., ROSCOE T., AND DRUSCHEL, P. Us-
ing Queries for Distributed Monitoring and ForensicQperating
Systems Review 40 (2006), 389-402.

TOTALVIEW TECHNOLOGIES TotalView Debugger. http://
www. t ot al vi ewt ech. conl productsTV. ht m

WATSON, G.,AND ABRAMSON, D. Relative Debugging for Data-
Parallel Programs: A ZPL Case StudyEEE Concurrency 84
(2000), 42-52.

